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Abstract— In this paper, we make the first benchmark effort to
elaborate on the superiority of using RAW images in the low light
enhancement and develop a novel alternative route to utilize RAW
images in a more flexible and practical way. Inspired by a full
consideration on the typical image processing pipeline, we are
inspired to develop a new evaluation framework, Factorized
Enhancement Model (FEM), which decomposes the properties
of RAW images into measurable factors and provides a tool for
exploring how properties of RAW images affect the enhancement
performance empirically. The empirical benchmark results show
that the Linearity of data and Exposure Time recorded in
meta-data play the most critical role, which brings distinct
performance gains in various measures over the approaches
taking the sRGB images as input. With the insights obtained
from the benchmark results in mind, a RAW-guiding Exposure
Enhancement Network (REENet) is developed, which makes
trade-offs between the advantages and inaccessibility of RAW
images in real applications in a way of using RAW images only
in the training phase. REENet projects sRGB images into linear
RAW domains to apply constraints with corresponding RAW
images to reduce the difficulty of modeling training. After that,
in the testing phase, our REENet does not rely on RAW images.
Experimental results demonstrate not only the superiority of
REENet to state-of-the-art sRGB-based methods and but also
the effectiveness of the RAW guidance and all components.

Index Terms— Low-light enhancement, benchmark, RAW
guidance, deep learning, factorized enhancement model.

I. INTRODUCTION

LOW-LIGHT environments cause a series of degradation
in imaging, including intensive noise, low visibility, color

cast, etc. More sophisticated shooting equipment and advanced
specialized photographic systems pay a premium to alleviate
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the degradation to some extent. Modern digital cameras make
efforts in tackling the problem by adjusting the shooting
parameters but also incur accompanying issues. For instance,
high ISO introduces amplified noise, and long-exposure time
results in blurring. Hence, it is economical and desirable to
enhance the low-light images by software.

In most applications, two kinds of images1 are taken as
the input of the enhanced approaches: RAW images [1]–[4];
RGB images [5]–[10], which are processed from raw images
via several procedures, e.g. demosaicing, white balance, tone
mapping, etc., in consideration of human vision preference and
system requirement, e.g. the storage limit. As reported in these
prevailing works [1], [2], [11], the low-light enhancement
methods that take the RAW data as input usually achieve sig-
nificantly superior performance to those taking sRGB data as
their input. On one hand, compared with sRGB images, RAW
data possesses two inherent advantages: 1) Primitive: RAW
data nearly is obtained directly from the sensor, and records
the meta-data related to the hardware and shooting settings,
whereas sRGB images have been processed for human vision
preference and system requirement, which inevitably causes
information loss. 2) Linear: As RAW data is directly captured
by sensors, RAW data’s relationship at different exposure
levels keeps linear, while that dependency in the sRGB domain
is nonlinear as processed by the processing system.

On the other hand, in real applications, it might be more
difficult to obtain RAW images from real applications. First,
RAW images include abundant information that is stored
costly, therefore many devices choose to only store sRGB
images. Second, from the user side, a devastating display of
RAW images relies on a series of professional processing
operations and expert knowledge. Therefore, more casual
users prefer a pocket device [12], e.g. mobile phone, instead
of advanced devices for shooting, e.g. digital single-lens reflex
(DSLR). Therefore, more user-friendly sRGB image-based
applications are becoming a trend. The advantages and
disadvantages of using RAW data will be illustrated in detail
in Sec. III-B.

Based on the above discussion, two critical issues are
revealed:

• What are the properties of RAW files that really con-
tribute to the low-light image enhancement?

1https://en.wikipedia.org/wiki/Raw_image_format
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• Is there an alternative way to utilize RAW files for real
applications instead of changing existing commonly used
image processing systems? For example, can we make
full use of advantages of RAW files but get rid of them
in testing?

To address these two issues, we start from a benchmark
effort. Centering at the procedures of the image process-
ing pipeline, we describe the low-light enhancement with a
newly proposed Factorized Exposure Model (FEM). FEM
decomposes the ambiguity of low-light image enhancement
into several measurable factors, e.g. a simulation of exposure
time adjustment in the image acquisition before processing.
With the benefits of this framework, we compare several
schemes of using RAW data with different combinations of
inputs and guidance to reveal critical properties of RAW data
that make real merits to the low-light image enhancement.
The benchmark results demonstrate that, among all factors,
Linearity of data and Exposure Time recorded in meta-data
play the most important role in quantitative measures. Inspired
by this insight, a novel RAW-guiding Exposure Enhancement
Network (REENet) is proposed to show an alternative route
that not only utilizes the RAW images but also is user-friendly
to sRGB-based applications. Different from previous RAW-
based approaches, our REENet takes processed sRGB images
as the input and only adopts RAW images as the guidance in
the training process, while getting rid of them in the testing
process. Extensive experimental results demonstrate that our
approach outperforms state-of-the-art sRGB-based approaches
both quantitatively and qualitatively.

The contributions of this work are summarized as follows,

• To the best of our knowledge, our work is the first bench-
mark effort to elaborate on the superiority of using RAW
images (different inputs/different supervision) quantita-
tively in the low light enhancement. With a detailed analy-
sis, the benchmark results reveal meaningful insights,
which inspire us to explore the new route to fill in the
gap between sRGB-based and RAW-based approaches.

• We follow the image processing pipeline and introduce
a newly proposed Factorized Exposure Model (FEM) to
describe the low-light enhancement process with several
measurable factors that lead to ambiguity, e.g. simulating
exposure time adjustment in the image acquisition before
processing, for benchmarking characteristics of RAW
images and the way to utilize them.

• Inspired by the insights from the benchmark, we further
propose a novel RAW-guiding Exposure Enhancement
Network (REENet) for low-light enhancement that only
needs RAW images as input during the training phase.
Experimental results show that, the proposed method
outperforms state-of-the-art sRGB-based methods when
RAW input images are not available.

The rest of this paper is organized as follows. Section II
briefly reviews the related sRGB-based and RAW-based work.
Section III shows the benchmark results of various approach
for the proposed evaluation framework called Factorized
Enhancement Model. Section IV introduces the proposed
RAW-guiding exposure enhancement network and provide

experimental results for comparison, and ablation study.
Conclusions are summarized in Section V.

II. LITERATURE REVIEW

A. sRGB-Based Methods

The earlier methods mainly take sRGB images as input.
The traditional histogram equalization methods adjust the
illumination via stretching the dynamic range of an image
by manipulating its histogram, globally [16], [17] or in a
local adaptive way [5], [6], [18]–[20]. These methods can
effectively adjust the image contrast, but are incapable of
changing visual structures of local regions, which inevitably
leads to under/over-exposure and amplified noise.

Inverted dehazing methods [7], [21], [22] invert low-light
images to be haze ones, improve the visibility via dehazing
algorithms, and then invert the processed result back as the
output. Although achieving superior performance in some
cases, these methods lack a convincing physical explanation.

Statistical model based methods optimize towards desirable
properties of images, e.g. perceptual quality measure [23],
interpixel relationship [24], physical lighting models [25],
and imaging or visual perception guided models [26]. These
methods show superior effectiveness in their focused aspects.
Because of the absence of flexibility in injecting visual
properties, these methods fail to handle extreme low-light
environments where images are buried with intensive noise.

Retinex model based methods [8], [27]–[31] separate an
image into two representations, i.e. reflectance and illumina-
tion layers, and then the well-designed enhancement methods
follow to enhance these two layers, respectively. The works
in [32], [33] enrich Retinex model-based methods with the
robust constraint and an explicit noise term, which helps better
capture and suppress noise.

Since 2017, the low-light enhancement steps into the deep-
learning era [9]. Deep learning based methods bring in
excellent enhancement performance and flexibility in injecting
various kinds of priors and constraints via designing new
architectures and training losses [10], [34]–[38], [38], [39].
However, the performance of these methods is dependent
on the distribution of the paired training images, which in
fact limits the model’s generality. Recently, learning-based
enhancement methods with unpaired data, e.g. Enlighten-
GAN [40], Zero-DCE [41] and DRBN [42], partially get rid
of the issue with CycleGAN, self-learned curve adjustment,
and quality guidance, respectively. Besides, there are many
works [43]–[46] dedicated to solving the composite tasks,
e.g. HDR and Blind Image Restoration, where the low light
enhancement just acts as a single component in these pipelines.

However, as the image processing systems introduce non-
linearity and discard some fine-grained information when
processing RAW images into sRGB ones, the enhancement
from sRGB images is highly ill-posed and hard to offer
desirable results in the extremely dark condition. Furthermore,
most of these methods target to restore both illumination (esti-
mating exposure level) and detailed signals (suppressing noise
and revealing details). Comparatively, in our work, we target
an image acquired with a longer exposure time, where the
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TABLE I

AN OVERVIEW OF LOW-LIGHT IMAGE ENHANCEMENT METHODS. TOP: SRGB IMAGE BASED METHODS. BOTTOM: RAW IMAGE BASED METHODS.
GRAY: GRAY IMAGE; SRGB: SRGB IMAGE; RAW: RAW IMAGE; RAWV: RAW VIDEO; γ : EXPOSURE TIME RATIO

performance in the dimensions except for the exposure level
is paid more attention to and the desired exposure level might
be not unique and can be given by users at the testing time.

B. RAW-Based Methods

Some works make efforts in improving the image quality
by building the learnable RAW image processing pipelines [1],
[2], [11] or unprocessing the sRGB images back into the RAW
domain for a more effective enhancement process [3], [4],
[15], [47], [48]. The signal values in RAW images are totally
dependent on the photon number captured by the sensor and
have a linear correlation with each other at different exposure
levels. This property decreases the difficulty in manipulating
the image pixel signal, and facilitates modeling and enhancing
low-light images/videos. In [1], Chen et al. proposed a novel
learnable processing strategy for the RAW data captured
in extremely dark indoor/nighttime environments, and con-
structed the See-in-the-Dark (SID) dataset which is the first
to provide short/long exposure RAW pairs. The successive
RAW-based methods [4], [13], [15] develop more advanced
architectures to further improve the low-light enhancement
performance on SID. In [13], a new deep network is designed
for image enhancement to offer state-of-the-art results in
turning the RAW image into a final high perceptual quality
image. In [15], Zhu et al. proposed a multi-exposure fusion

module to combine the generated multi-exposure images with
a set of exposure ratios and then adopted an edge enhancement
module to produce high-quality results with sharp edges. The
work in [4] also adopts a two-stage framework that introduces
attention to context encoding blocks to deal with the restora-
tion of low/high-frequency information at different stages. The
work in [14] focuses on noise suppression of RAW images
captured in the low-light condition and improving the trained
model’s capacity via synthesizing more realistic data with the
proposed noise model. The works in [2], [11] move one step
forward to focus on low-light video enhancement. In [11],
a novel Dark Raw Video (DRV) dataset is created including
paired low/normal-light RAW images in static scenes and
unpaired low-light RAW images in dynamic scenes, and a new
deep network fully considering generalization and temporal
consistency is built jointly with VBM4D to effectively enhance
the low-light videos while suppressing noise. In [2], Jiang
and Zeng developed a novel optical system used to capture
low/normal-light videos at the same scene, i.e. See-Moving-
Objects-in-the-Dark (SMOID) dataset, and built a learnable
spatial-temporal transformation to turn the RAW videos into
normal-light sRGB ones.

Although adopting RAW images in learning-based methods
leads to a large performance leap, it is still unclear what
properties of RAW data contribute to those gains. Furthermore,
the inaccessibility of RAW files limits their application scopes.
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In our paper, we aim to benchmark the ways to utilize RAW
images quantitatively and, different from RAW-based methods,
we explore an alternative way to utilize RAW files for real
applications without changing the existing ISP systems.

III. BENCHMARKING RAW DATA UTILIZATION IN

LOW-LIGHT IMAGE ENHANCEMENT

A. Motivation

Naturally, the low-light image enhancement problem taking
the low-light sRGB image as the input image is highly ill-
posed. Comparatively, restoring from RAW images is much
less ambiguous especially when the exposure ratio in the
meta-data of RAW files has provided much information
about the illumination. To compare different methods from
the perspective of RAW utilization, we formulate the image
processing pipeline and propose a novel view to regard
low-light image enhancement as the framework of Factorized
Enhancement Model (FEM), which decomposes that ambigu-
ity into several measurable factors, and facilitates comparing
the effects of various properties of RAW files on low-light
image enhancement.

B. Characteristics of RAW Files

Modern digital shooting systems with the image process-
ing pipeline proceed the sensor data into a more visually
pleasant image with less noise, which is stored as an RGB
file (e.g. sRGB image in JPEG or PNG format). Compared
with the processed sRGB image, the RAW file has the follow-
ing good properties:

• Access to meta-data. During image acquisition, cameras
record the shooting parameters as the meta-data dmeta for
original sensor data dsens . Influenced by the hardware,
the sensor data is highly camera-specific, e.g. adopting
different black levels, saturation, and lens distortion and
being modeled by a camera-specific real-world noise
model [14]. A RAW file f raw consists of sensor data
dsens and meta-data dmeta .

• Linearity of data. In a linear image, the pixel values
are directly related to real-world signal, i.e. the number
of photons received at that location on the sensor and
therefore keep a linear correlation at different exposure
levels. To restore linear RAW data yraw from the sensor
data dsens , the hardware calibration operations Fcali (·)
such as linearization and lens calibration are applied.
A theoretically perfect calibration can decouple sensor
data with its capture equipment, making the calibrated
signal linearly depend on the real-world signal:

yraw = Fcali (d
meta, dsens , α), (1)

Note that because sensor data dsens is stored discretely,
the restored yraw is discrete as well. As the distributions
of noise and bias induced by the hardware are quite
complex and data-dependent [14], a perfect calibration
is hard to obtain.

• Fine-grained quantization level (i.e. more abundant
intensities and colors). Most RAW files contain much

abundant information, due to their high resolution and
wide signal range capturing more fine-grained intensities
and colors. However, the RAW images are stored costly
and unfriendly to be displayed to the human vision (a
nonlinear perception system), which limits the application
scopes of RAW images. The final output of a processing
system is usually an 8-bit sRGB image.

The aforementioned characteristics disappear when the
RAW files are processed into final sRGB images. Most image
processing systems serve human vision perceptual quality,
therefore the successive adjustment stages in processing based
on human vision are conducted, e.g. white balance, tone
mapping and gamma correction. A standard sRGB system
produces a nonlinear sRGB image ysrgb as follows:

f srgb = Fproc(d
meta, yraw, β), (2)

where Fproc(·) denotes the processing stage, and β denotes
the configuration. In Section III-C, we will provide a more
detailed analysis of Fproc(·). After the processing, a nonlinear
8-bit image f srgb is obtained. Note that the meta-data might be
also available for sRGB files as well, e.g. EXIF in JPEG format
or a coupled metadata file directly obtained from the digital
camera. In more common cases, e.g. the images on the Internet
and social networks, or the edited images by post-processing
or editing, the perfect meta-data is hardly available. Therefore,
in our paper, the final version of the proposed method does
not rely on access to the meta-data in the final sRGB files.
However, to make our paper more comprehensive, we also
discuss situations where sRGB files are coupled with the
perfect metadata recorded or not to see how it benefits the
enhancement.

To summarize, characteristics of RAW files include the
access to meta-data, linearity of the data, as well as
fine-grained quantization level (i.e. more abundant intensities
and colors). These properties disappear when the RAW files
are projected into the final sRGB images via the image
processing systems.

C. Image Processing Pipeline

In this section, we describe the image processing pipeline
Fproc (·) in Eqn. (2). As the specific pipelines and config-
urations of the processing systems in each kind of camera
are kept as commercial secrets, in our discussion, we treat
these details as black boxes. Despite this, the conventional
image processing system [47] also helps establish a concise
mathematical model as shown in Fig. 1 (a), which we can
make use of as the framework to evaluate the properties of
RAW that benefit low-light image enhancement as shown in
Fig. 1 (b). Note that all sRGB images used in benchmark as the
final targets are processed by Libraw, which is regarded as a
black box in our discussion. Our defined simplified processing
pipeline, including a simplified demosaicking module, only
provides the intermediate supervision in the RAW domain and
does NOT actually influence benchmark results.

1) Shot and Read Noise: The real-world signal recorded in
RAW files is mixed with physically caused noise. Compared
with sRGB, the noise model in the RAW domain is seldom
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Fig. 1. An overview of the image processing pipeline and benchmark framework. (a) We use a simplified image processing conventional pipeline to model
the process. The RAW file includes the noisy RAW image yraw

s , channel weight ωc for white balance, color correction matrix Mcc for color correction, and
exposure time ratio γ . The workflow of the image processing pipeline is denoted by black lines. (b) In our benchmark, we aim to compare four output
targets from the pipeline, i.e. the RAW image yraw

s , linear RGB image ylin , the image before the quantization ysrgb , and sRGB f srgb (denoted by blue
lines). However, in the benchmark, we cannot access the image processing pipeline and therefore take the RAW image yraw

s , linear RGB image ylin , channel
weight ωc for white balance, color correction matrix Mcc for color correction, and exposure time ratio γ as the input in our benchmark. These factors are
combined for comparing the effects of different properties of RAW files on the low-light image enhancement. The related workflow is (denoted by gray
lines).

Fig. 2. Visual comparison results of Gamma correction results with different
settings. The sRGB-standard Gamma compression is utilized in the original
image. Left Panel: The results brightened by inverting the sRGB-standard
Gamma function. Right Panel: The results brightened by the inversion of
Adobe RGB (1998) standard.

disturbed by the nonlinearity in the processing pipeline. Sensor
noise in the RAW domain consists of two parts: shot noise
and read noise [49]. By using the fixed aperture and ISO,
the value of noise-free signal x is linearly dependent on the
exposure time. Specifically, to simulate shooting in the low-
light conditions, we utilize a short-exposure time, then the
sensor data yraw

s in the RAW domain can be formulated:

yraw
s = xs + nshot (xs) + nread , (3)

where xs is the noise-free short-exposure RAW image and
yraw

s is the noisy one, nshot and nread are shot noise and read
noise. Subscript s denotes short-exposure here. As simplified
in [50],

yraw
s � xs + n(xs),

n(xs)[i ] ∼ N (0, σ 2
s [i ]),

σ 2
s [i ] = λshot xs[i ] + λread , (4)

where λshot and λread denote the noise levels for a camera, i
denotes location and [·] returns the value at location i .

2) Demosaicing: Since the sensor is only capable of cap-
turing photons, not aware of the chromatic light, to precept the
chroma information, in the camera the pixels are covered by
colored filters that are arranged with a certain pattern, e.g. the
R-G-G-B Bayer pattern. Demosaicing is one of the processing
stages that helps reconstruct the full-size color image. In our
implementation, the R-G-G-B pattern is converted into RGB
channels via averaging green channels and adopting Bilinear
interpolation to upsample the resolution to m × n × 3.

3) White Balance and Color Correction: Since the filtered
sensor data is affected by the color temperature of the ambient
light, the camera applies the white balance to generate images
under the normal illumination with the colors visually pleasing
to human eyes. In this stage, three channels are multiplied
with the weights wc (c = r, g, b), which are obtained from
the RAW file. Note that, the light metering obtained from the
low-light conditions might be inaccurate [11], those weights
(denoted by ŵc) are usually biased and need additional cali-
bration. This module is formalized:

ywb
s = yraw

s ◦ Ŵ ,

ywb
l = yraw

l ◦ W,

Ŵ = [[[
ŵr , ŵg, ŵb

]]]
1×1×3,

W = [[[
wr , wg, wb

]]]
1×1×3, (5)

where ◦ means element-wise product and subscripts s
and l denote short-exposure and long-exposure, respectively.
A color correction follows to adopt a 3 × 3 color correction
matrix (CCM) to transform the color space of the camera
to the output one, namely sRGB. We obtain the CCM Mcc

from the meta-data of RAW files. To be specific, the matrix
converting the camera color space into XYZ color space is
usually recorded in RAW files or a configure file in the
processing systems, e.g. being stored in EXIF, and the matrix
parameter converting the XYZ color space into sRGB color
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space is fixed. This module is formalized:

ylin = ycc
3×(m×n) =

⎛
⎜⎜⎜⎜⎝

ycc
r

ycc
g

ycc
b

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ywb
r

ywb
g

ywb
b

⎞
⎟⎟⎟⎟⎠ Mcc . (6)

For convenience, ycc is represented equivalently as ylin .
We call the procedure that converts yraw into ylin as linear
process.

4) Gamma Compression and Tone Mapping: To make the
images better perceived by humans, nonlinear procedures are
further conducted, including Gamma compression as well as
tone mapping [47]. For simplicity, more details about these
two stages are skipped. We use a function σ(·) to denote the
nonlinear process consisting of these two stages as follows:

ysrgb = σ(ycc). (7)

These nonlinear procedures introduce considerable ambiguity
for creating the inverse mapping of low-light image enhance-
ment. For example, as shown in Fig. 2, if we cannot obtain
the Gamma compression function accurately, a huge gap
between the brightened images2 by inverting two Gamma
functions is incurred. It is demonstrated that, for different low-
light images, the proper inverse Gamma functions should be
adopted adaptively.

5) Quantization: Finally, the quantization Q(·) comes to
turn the data with more fine-grained quantization levels into
8bit to obtain a more compact representation for saving storage
as follows:

f srgb = Q(ysrgb). (8)

D. Evaluation Framework: Factorized Enhancement Model

For the benchmark, we regard the low-light enhancement
as a simulation of amplifying the exposure time during cap-
turing, which has a concise mathematical form and yields
conveniences for an accurate and controllable enhancement
process of low-light images. With exposure amplified γ times,
a corresponding long-exposure data yraw

l , which is usually
approximated as noise-free because of high Signal-Noise Ratio
(SNR), can be represented as follows:

yraw
l � xl = γ xs, (9)

where xs , xl and yraw
l ∈ Rm×n×1 are the latent radiance

value without any noise with a short-exposure shot, that with
a long-exposure shot, and the measured noisy value captured
with the long-exposure time, respectively. Therefore, if the
exposure ratio in the normal-light environment is given, the
low-light enhancement is intrinsically close to denoising on
already properly brightened RAW images yraw

b :

yraw
b = γ yraw

s � γ xs + γ n(xs),

γ n(xs)[i ] ∼ N (0, σ 2
b [i ]), (10)

2The brightened images are generated by sequential operations of inverted
Gamma compression, multiplication with the ratio of exposure time, and
Gamma compression.

Fig. 3. Evaluation of Effects of RAW properties on low-light image
enhancement. E denotes exposure time. Q denotes dense quantizication levels.
L denotes linearity. Baseline denotes the method taking 8bit (sRGB) as the
input. RAW-guidance denotes the proposed method in Sec. IV.

with σ 2
b [i ] = γ λshot(γ xs[i ]) + γ 2λread , where subscript

s signifies short-exposure, l represents long-exposure, and
b means brightened. Therefore, the enhancement model
Fenhance (·) can be represented as follows,

f̂ srgb = Fenhance
(
yraw

b

)
. (11)

where f̂ srgb is the prediction of the enhancement model
Fenhance (·). Eqn. (11) provides a flexible way to benchmark
RAW utilization as shown in Fig. 1 (b). That is, yraw

b
can be replaced with any reasonable combination of images
(RAW/sRGB images) and meta-data in the input combina-
tion module. After that, the input is feed-forwarded into a
deep network for low-light image enhancement. From the
performances of deep networks with different inputs, we can
infer the importance of properties of RAW files for the
enhancement.

E. RAW Benchmarking

In this benchmark, we compare several schemes of RAW
data utilization with different inputs and guidance to explore
how many contributions the characteristics of RAW data can
bring in to the low-light enhancement task. The effects of
different characteristics including linearity, exposure time and
white balance parameters recorded in metadata, and quanti-
zation levels, denoted by L, E, W and Q, are analyzed with
experimental results.
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TABLE II
EVALUATION ON EFFECTS OF linearity. Z DENOTES ZERO-DCE, WHICH

AIMS TO SIMULATE THE ILLUMINATION ADJUSTMENT GUIDED BY THE
EXPOSURE TIME RATIO. γ̂ DENOTES TO THE RATIO CALCULATED

WITH THE MEAN PIXEL VALUE. 8bit (·) DENOTES STORING

DATA WITH 255 QUANTIFICATION LEVELS

TABLE III
EVALUATION ON EFFECTS OF exposure time. Z DENOTES ZERO-DCE,

WHICH AIMS TO SIMULATE THE ILLUMINATION ADJUSTMENT GUIDED
BY THE EXPOSURE TIME RATIO. γ̂ DENOTES TO THE RATIO

CALCULATED WITH THE MEAN PIXEL VALUE. 8bit (·) DENOTES

STORING DATA WITH 255 QUANTIFICATION LEVELS

1) Experimental Settings: SID dataset [1] is adopted for
training and evaluation. We use Sony sub-dataset, constructed
with a Sony α7S II equipped with a Bayer sensor. The
subset contains 409 paired low/normal-light RAW images.
The training, testing, and validation sets include 280, 93,
and 36 paired images. Based on characteristics of RAW files
mentioned in Section III-B, we employ different operations
on input/target pairs and feed-forward them into the similar
architecture i.e. U-Net [51] for performance comparisons.
All approaches are trained from scratch on SID. For RAW
based approaches, the training settings follow the paradigm
of [1] i.e., unpacking the RAW data with Bayer pattern into
4 channels, linearizing the data, and normalizing it into [0, 1].
Then, the data is fed into a U-Net [51]. For sRGB-based
approaches, corresponding sRGB images are processed by
Libraw, where the histogram stretching [1] is not adopted
because it will brighten images during processing, which is far
away from our both targets in benchmarking and developing
a novel RAW utilization paradigm. The network is trained
with an L1 loss with normal-light sRGB images as ground
truths. The benchmark results in PSNR ans SSIM are shown
in Table II-VII. The extended tables with more metrics are
provided in Table I-V of the supplementary material due to
the limited space.

2) Linearity: We compare several groups of versions that
pre-process the signal in the linear and nonlinear domains,
respectively, as shown in Fig. 3 (a) and Table II (corresponding
to Table I in the supplementary material). For the methods
working in the nonlinear sRGB domain, Zero-DCE [41] is
adopted to adjust the illumination in the sRGB domain guided

TABLE IV
EVALUATION ON EFFECTS OF quantization. Z DENOTES ZERO-DCE,

WHICH AIMS TO SIMULATE THE ILLUMINATION ADJUSTMENT GUIDED
BY THE EXPOSURE TIME RATIO. γ̂ DENOTES TO THE RATIO CALCULATED

WITH THE MEAN PIXEL VALUE. 8bit (·) DENOTES STORING DATA

WITH 255 QUANTIFICATION LEVELS

TABLE V
EVALUATION ON THE PERFORMANCE GAP BETWEEN Quantify then

Brighten AND Brighten then Quantify. XX/XX MEANS PSNR↑/SSIM↑

TABLE VI
EFFECTS OF white balance. WHITE BALANCE PARAMETERS (W) ARE

RECORDED IN META-DATA OF RAW FILES AND LINEAR PROCESS (P) IS

DEFINED IN SEC. III-C. THE REENETraw AND REENET ADOPT

PROPOSED RAW GUIDING STRATEGY AND RELATED DETAILS ARE

ILLUSTRATED IN SEC. IV-B. IMPLEMENTING WHITE BALANCE ON RAW
DATA HELPS BRIDGE THE GAP BETWEEN RAW AND RGB

TABLE VII
EVALUATION ON EFFECTS OF USING DIFFERENT WHITE BALANCE

PARAMETERS FOR PROCESSING. L+E+Q ADOPTS AN END-TO-END

RAW-TO-SRGB ARCHITECTURE. R2Rl AND R2Rs LEARN TO TURN
LOW-LIGHT RAW IMAGES INTO NORMAL-LIGHT RAW IMAGES, VIA

PERFORMING DENOISING ON BRIGHTENED RAW IMAGES, AND THEN

PROCESSING THE RAW IMAGES. R2Rs UTILIZES THE WHITE BALANCE

PARAMETERS OF SHORT-EXPOSURE RAW AND R2Rl USES THOSE OF
LONG-EXPOSURE ONE. WB DENOTES WHITE BALANCE

by the exposure time ratio, i.e. taking the low-light input and
the ratio as the input. It is demonstrated that, the methods
working in the linear domain, where the illumination can be
directly adjusted via multiplication with the ratio, significantly
outperform the ones working in the nonlinear domain with
performance gains over 2.49 dB in PSNR, over 0.069 in SSIM,
about 0.7 in NIQE and 0.03 in LPIPS. The results illustrate
the critical role of linearity of RAW data in low-light image
enhancement.

3) Exposure Time: We also compare the methods that are
assumed to obtain the exposure time or not, as shown in
Fig. 3 (b) and Table III (corresponding to Table II in the
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supplementary material). For the methods that do not have
the ground truth exposure time ratio γ , we use the estimated
γ̂ with the mean pixel values of short/long-exposure linear
data. It is observed that, using the ground truth exposure
time ratio γ leads to significant performance improvement
with performance gains over 2.96 dB in PSNR, over 0.035 in
SSIM, about 0.2 in NIQE and over 0.03 in LPIPS, which
demonstrates the exposure time recorded in meta-data as
another dominating factor. Apparently, the estimated ratio γ̂
makes the adjusted low-light images biased, with over-exposed
and dark regions, which increases ambiguity in the low-light
enhancement.

4) Quantization: We compare the methods taking the
images with different quantization levels as their input as
shown in Fig. 3-(c) and Table IV (corresponding to Table III
in the supplementary material). It is observed that, more
fine-grained quantization levels only lead to relatively small
gains if the compression is implemented after brightening,
called Brighten then Quantize strategy, as shown in the top
three comparisons of Table IV (corresponding to Table III in
the supplementary material) with a performance gain under
0.48 dB in PSNR and competitive performances in other
metrics. However, if quantizing the data into 8-bit format
before brightening, called Quantize then Brighten strategy,
tremendous performance drops are observed in Table V. The
performance gap originates from the dynamic range stretching
that makes the brightened dark region have more fine-grained
quantization levels and preserve more detailed signals. These
results demonstrate the importance of compressing low-light
images following Brighten then Quantize strategy.

5) White Balance: The white balance parameters recorded
in the meta-data of RAW files also can contribute to low-light
image enhancement. The experimental results in Table VI
(corresponding to Table V in the supplementary material) and
Fig. 3 (d) show the potential to improve the performance of
RAW-based and the proposed RAW-guiding methods REENet
by pre-processing RAW images with white balance parame-
ters. A gain over 0.08 dB in PSNR is observed, meanwhile
SSIM and NIQE improve slightly. In our comparisons, to uti-
lize these parameters during training, we amplify the unpacked
4-channel linear data with the parameters.

We also study the related utilization in the RAW-to-RAW
approaches and figure out how much the pre-processing can
help bridge the gap between RAW and sRGB in Table VII.
R2Rl and R2Rs are two RAW-to-RAW based methods. They
are both end-to-end trained to target the ground-truth RAW
data and then process them into sRGB images with Libraw,
which uses short and long-exposure white balance parameters,
respectively. It is observed that, short-exposure white balance
parameters lead to a performance drop while the long-exposure
ones improve the low-light enhancement performance. The
performance gap comes from two reasons: 1) R2Rl takes the
same white balance parameters as the ground truth, which
leads to similar reconstructed results to the ground truth; 2) the
exposure time will affect the accuracy of the light metering
in a camera, and the light metering with short exposure might
be inaccurate w.r.t. ground truth [11].

6) Comparisons to State-of-the-Art Methods: the above-
mentioned baselines, we also evaluate several state-of-the-
art sRGB-based methods including HE [16], Dehazing [7],
MF [31], MSR [8], LIME [52], BIMEF [26], BPDHE [5],
LLNet [9], SICE [37], KinD [10], DeepUPE [38] and Zero-
DCE [41], and RAW-based methods including EEMEFN [15]
and ELD [14] on SID-Sony dataset and provide systematic
benchmark results using various metrics including PSNR,
SSIM [53], VIF [54], NIQE [55] and LPIPS [56], shown in
Table VIII.

Apparently, there is still a huge performance gap between
RAW-based and sRGB based approaches, mainly caused by
the absence of linearity. Among RAW-based methods, the
one equipped with the ground truth meta-data shows better
performance, and when the ground truth exposure time label is
absent, the performance drops a lot because it is quite difficult
for the enhancement model to predict the illumination level
accurately. The effect of white balance and quantization with
Brighten then Qunatify strategy is relatively small but still
benefits the enhancement. Among the sRGB-based methods,
proposed REENet with RAW guiding strategy shows superior
performance, and there are also performance drops in PSNR
when some characteristics are absent but their measures are
still higher than other methods that also takes sRGB images
as input. Note that REENet8bit follows the traditional route –
Quantize then Brighten, and E adopts Brighten then Quantize
strategy for better quality. If Quantize then Brighten is adopted
for E, i.e. the same settings as REENet8bit , the PSNR will drop
to 16.89 dB as shown in Table V.

7) Qualitative Evaluation: The corresponding qualitative
results are shown in Fig. 4, where we only provide relatively
reasonable results. Apparently, the methods utilizing white
balance parameters show accurate colors, e.g. L+E+Q+W
and L+E+Q. Note that all sRGB-based methods have applied
white balance as a part of processing, which corrects the
weight of RGB channels. Linearity and explicit exposure
time induce the correct illumination, e.g. L+E+Q and L+Q,
and suppress artifacts in Q and baseline. More fine-grained
quantization levels make the results change little, e.g. L+E+Q
and L+E. As shown in the bottom panel, EEMEFN’s results
have an obvious color bias. ELD achieves better visual quality
by using additional synthetic data. Comparatively, our REENet
restores visually pleasant colors and details. Note that, REENet
does not need RAW files during the testing phase.

IV. REENET: RAW-GUIDING EXPOSURE

ENHANCEMENT NETWORK

From the benchmark results, the critical roles that the
properties of RAW files play in the low-light enhancement
are obviously observed, especially for linearity and exposure
time. Therefore, we are inspired to construct a RAW-guiding
Exposure Enhancement Network (REENet) to fully utilize
characteristics of RAW files, fully considering the advantages
of RAW files as well as its inaccessibility of RAW images if
we do not hope to rebuild the ISP process during the testing
process. To achieve this, REENet only gets access to RAW
images in the training process. With the guidance of RAW

Authorized licensed use limited to: Peking University. Downloaded on January 27,2022 at 16:04:30 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: TOWARDS LOW LIGHT ENHANCEMENT WITH RAW IMAGES 1399

TABLE VIII

AN OVERVIEW OF BENCHMARK RESULTS ON SID. L DENOTES LINEARITY, E DENOTES EXPOSURE TIME, Q DENOTES DENSE QUANTIZATION LEVEL
AND W DENOTES WHITE BALANCE. γ IS THE RATIO OF EXPOSURE TIME AND WHEN META-DATA IS ABSENT, IT IS REPLACED BY γ̂ , THE

RATIO OF MEAN PIXEL VALUE. THE ZERO-DCE (Z) IMPLEMENTED AS PRE-PROCESSING IS TRAINED FROM SCRATCH WITH INPUTS

CONCATENATED WITH RATIO AND L1 LOSS WITH THE TARGET. R2R MEANS RAW-TO-RAW APPROACHES. KIND∗ IS TRAINED

FROM SCRATCH ON SID. THE BOLD VALUE DENOTES THE BEST RESULT IN EACH CATEGORY

Fig. 4. Qualitative results of benchmark. Apparently utilizing more characteristics of RAW improves the final quality of results with less noise and artifacts.
The right part of the input is brightened.

images in the training, REENet learns to project the nonlinear
sRGB images into the linear domain, which is proven to be
a better paradigm than directly learning to enhance images
in the nonlinear domain. Furthermore, with the difficulty in
reversing the total process in mind, REENet performs the
enhancement in the linear RGB domain. We adopt the linear
process to produce the linear RGB images, which are defined
in Sec. III-C. Then, with the wealth of the meta-data of RAW
files and the linearity, the gap between sRGB images and RAW
images can be largely bridged.

It is noted that, because of the ill-posed nature of the
low-light enhancement task, the perfect ground truth is quite

hard to define. In FEM, the low-light image enhancement
mainly focuses on suppressing noise and revealing detailed
signals with a target (or given) exposure level. Although
the ground truth images may not be perfect in providing a
golden exposure level, the abundant information in the RAW
image captured with a long exposure time also provides useful
guidance for deriving a more effective enhancement model.

A. Model Architecture

As shown in Fig. 5 (a). REENet consists of three
sub-modules:
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Fig. 5. Illustration for the architecture of our RAW-guiding Exposure Enhancement Network (REENet). REENet makes full use of low/normal light RAW
images in the training. Functionally, the three parts of the REENet, i.e. Unprocess, Enhance and Process, performs unprocessing, enhancement and processing,
respectively.

• Unprocess to project sRGB images into the linear RGB
domain;

• Enhance to suppress the amplified noise and color bias
in the brightened images, which are adjusted by being
multiplied with the exposure time ratio (ground truth or
estimated);

• Process to project the enhanced results back into the
nonlinear sRGB domain.

Note that, although the pipeline introduced in Section III-C is
simplified, our developed Unprocess and Process are flexible
and general frameworks to transform the signals between
linear/nonlinear domains, which helps bridge the gap between
the linear domain in image processing systems and the sRGB
domain.

1) Unprocess: Transfer Nonlinear Data Into Linear
Domain: Since sRGB images do not include meta-data, the
conventional enhancement method [47] projects the processed
nonlinear sRGB images back into the linear domain via hand-
crafted approaches. Hence, the designed inversion process
inevitably has a gap with the real processing approaches in
various real applications, leading to inaccurate estimation. The
gap might be further magnified especially, as shown in Fig. 2,
when the exposure time ratio is multiplied. Therefore, an end-
to-end convolutional neural network, i.e. a U-Net [51] σ �(·) is
adopted for that. More exactly, given the processed input f srgb

s
and linear target ylin

s , Unprocess aims to predict a brightened
linear RGB image:

ŷlin
b = γ � ŷlin

s = γ �σ̂ �( f srgb
s ), (12)

where γ � = γ if the meta-data of the short-exposure RAW
image is available during the testing phase, or γ � = γ̂ if not,
and f srgb

s is quantized from ysrgb
s with 8 bits or 16 bits per

pixel. The gap of f srgb
s and ysrgb

s depends on the number of
quantization levels, whose impact has been explored in our
experiments.

2) Enhance: Normal-Light Image Reconstruction: The
brightened linear RGB images, amplified by the exposure time

ratio, are:

ylin
b = ylin

s × γ =

⎛
⎜⎜⎜⎜⎝

ŵrγ yraw
s,r

ŵgγ yraw
s,g

ŵbγ yraw
s,b

⎞
⎟⎟⎟⎟⎠ Mcc . (13)

Compared to the long-exposed linear RGB images:

ylin
l =

⎛
⎜⎜⎜⎜⎝

wr yraw
l,r

wg yraw
l,g

wb yraw
l,b

⎞
⎟⎟⎟⎟⎠ Mcc =

⎛
⎜⎜⎜⎜⎝

wrγ xs,r

wgγ xs,g

wbγ xs,b

⎞
⎟⎟⎟⎟⎠ Mcc, (14)

and according to Eqn. (10), Enhance targets to suppress the
noise, whose noise levels are γ �2λread and γ �λshot , respec-
tively, and aims to compensate for the color casting caused
by the inaccurate white balance Ŵ . Keeping the excellent
modeling capacities of convolutional networks for image/video
denoising [57], [58] and color correction [1], [11] in mind,
a U-Net is adopted to build the architecture of Enhance. For
simplicity, we use g(·) to denote the fitted denoising and color
restoration processes. Given the brightened inputs ylin

s × γ �
and long-exposed linear targets ylin

l , Enhance aims to estimate
ŷlin

l = ĝ(ylin
s × γ �).

3) Process: Transfer Linear Data Into Nonlinear Domain:
Similar to Unprocess, another U-Net is utilized for modeling
the nonlinear process. To be exact, given the long-exposure
linear input ylin

l and the corresponding nonlinear sRGB target
ysrgb

l , Process outputs ŷsrgb
l = σ̂ (ylin

l ).
To summarize, our REENet predict the exposure time

adjusted result of the input in real applications via:
ŷsrgb

l = σ̂ (ĝ(̂σ �(ysrgb
s ) × γ �)). (15)

Note that, the testing phase can work without RAW files as
input.

B. Experimental Results

1) Training Details: During the training process, the non-
linear low/normal-light sRGB images processed by Libraw
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TABLE IX

QUANTITATIVE EVALUATION COMPARING TRADITIONAL METHODS AND THE PROPOSED METHOD. THE BEST RESULT IS DENOTED IN BOLD

Fig. 6. Qualitative evaluation comparing traditional methods and the proposed method. Left Panel: Original results of competing methods. Right Panel:
Gamma corrected results with aligned brightness. The last image is composed of the brightened input at the left and the Ground Truth at the right. Note that
the input is almost totally invisible without brightening..

Fig. 7. Qualitative evaluation comparing learning-based methods and the proposed method. Left Panel: Original results of competing methods. Right Panel:
Gamma corrected results with aligned brightness. The last image is composed of the brightened input at the left and the Ground Truth at the right. Note that
the input is almost totally invisible without brightening..

are taken as inputs and ground truths, respectively. The
RAW images are also employed as training guidance. Adam
optimizer [59] and L1 loss are adopted for training. The
patch size and batch size are set to 512 × 512 and 1,
respectively. The output results of all three sub-networks are
clipped to [0, 1]. All sub-networks of REENet are pre-trained
for 3000 epochs independently. We set the learning rate to
10−4 at the beginning and 10−5 after 2,000 epochs. After
that, all sub-networks are trained jointly with the learning
rate 10−5 for 1,000 epochs. REENet is trained on Intel(R)
Xeon(R) E5-2650 2.20GHz CPU and an Nvidia RTX 2080Ti
GPU in Python and Tensorflow. Because the input images
have very large resolutions, we crop 4256 × 2848 images into

2128×1424 patches during the testing if needed. To avoid the
blocking artifacts, we pad 200 pixels in the patch cropping for
each patch. Because of the extremely dark settings of SID,
we adopt 16-bit sRGB images as input to produce higher
quality results, and also provide results of the proposed method
trained and tested on 8-bit sRGB, named REENet8bit .

2) Comparison to Conventional Methods: Our methods are
compared with conventional methods: Dehazing [7], HE [16],
MSR [8], MF [31], BIMEF [26], LIME [52], BPDHE [5].
In the quantitative evaluation, we adopt PSNR, VIF [54],
SSIM [53] and LPIPS [56] as the full-reference metrics,
and NIQE [55] as the no-reference metric. Considering
that some methods do not aim to produce the targeted
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TABLE X

QUANTITATIVE EVALUATION COMPARING LEARNING-BASED METHODS AND THE PROPOSED METHOD. THE BEST RESULT IS DENOTED IN BOLD

Fig. 8. The preference ratio on fidelity and aesthetics of different methods.

illumination, we adjust the brightness of these results with
Gamma correction, where each image chooses the Gamma
curve with the best PSNR to produce the final result. Scores
with brightness-aligned results are signified with ∗. The
comparison results are presented in Table IX.

It is demonstrated that, our REENet achieves better per-
formances than conventional methods on SID dataset in all
metrics. We also show qualitative results in Fig. 6. It is
showed that, conventional methods might brighten images uni-
formly with observed under/over-exposure regions. Besides,
SID dataset’s images are extremely under-exposed. Hence,
the enhanced results might include intensive noise and severe
color casting or insufficient illumination. After using a Gamma
correction to adjust the brightness, there is still obvious noise
and color casting in the results of other methods.

3) Comparison to Learning-Based Methods: The perfor-
mances of different learning-based methods taking sRGB
low-light images are compared on SID dataset, including
SICE [37], LLNet [9], DeepUPE [38], and KinD [10]. When
testing KinD, the brightening parameter is set to maximum
allowed 5.0. We rescale the resolution of input images when
testing SICE because of the GPU memory limit. The quanti-
tative results are illustrated in Table X, with the same setting
of metrics. It is demonstrated that, if all methods take the
processed sRGB images as input during the testing phase, our
REENet achieves better results on SID dataset. The qualitative
results are presented in Fig. 7. It can be seen from Fig. 7 that,
without the help of the ratio, the results of these methods
are severely under-exposed on SID. Comparatively, we obtain
visually pleasant results. The results further demonstrate the
superiority of our method and show the role that the exposure
time adjustment play in helping improve the generalized
enhancement performance.

Fig. 9. A failure case of the proposed method. There is obvious color casting
in the input which looks more yellow, and in our result, this degradation is
not handled perfectly.

TABLE XI

ABLATION STUDY OF OUR NETWORK ARCHITECTURE DESIGN

4) User Study: Besides full-reference image quality metrics
PSNR, SSIM, VIF, LPIPS, and non-reference image quality
metric NIQE, we further perform the user study to evaluate
the image quality of enhanced results by different methods.
Besides the four cases shown in Fig. 6 and Fig. 7, extra six
cases are selected from the testing set to add up to 10 cases
shown to the participants. Each subject is asked to select
3 from the 12 results that best match the target image (Fidelity)
and have the best visual quality (Aesthetics). A total of
20 volunteers participate in this study and 400 selections are
tallied. As shown in Fig. 8, the proposed REENet obtains the
best average preference ratio of 32.4% and 30.5% for both
the fidelity and aesthetics, respectively, outperforming other
methods. Note that, for a fair comparison, we use REENet8bit

here and align the brightness of results of other methods. The
user study quantitatively verifies the superiority of our method.

5) Ablation Studies: We first perform the ablation study
to evaluate the effectiveness of our architecture design in
Table XI and Fig. 10. Firstly, we consider several versions
i.e. (the top three methods) only making use of processed
sRGB low/normal-light pairs in both training and testing. It is
observed that, very low PSNRs are obtained, even with the
advanced loss, i.e. MS-SSIM, and the estimated exposure time
ratio γ̂ via the mean pixel values.

The experiment with the estimated exposure time ratio
γ̂ instead of the ground truth demonstrates the effect of
utilizing the meta-data. The results using original RAW images
reflect the importance of adopting linearly preprocessing RAW
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Fig. 10. Visual comparison of different settings described in Table XI. The obvious subjective superiority of the proposed REENet proves the efficiency of
our design.

TABLE XII

ABLATION STUDY FOR SUB-NETWORKS TAKING DIFFERENT INPUTS

images. We can see the drop in the measures, as the adopted
linear process is effective in filling in the gap between RAW
image and processed sRGB ones, which helps reduce the
difficulty in simulating the whole processing system. Using
handcrafted inverse Gamma algorithm [60] instead of U-Net as
Unprocess module will also cause a performance drop because
unprocessing becomes less flexible and effective to deal with
extremely dark conditions.

The quantitative results of each subnet are also provided in
Table XII. The gaps among these subnets show how different
stages in our design affect the enhancement performance. It is
observed from the results, Unprocess and Process make efforts
in an accurate nonlinear mapping, which leads to a small
performance drop in measures. The large gap between the
Row. 1-2 and Row. 3 demonstrates that, it is quite challenging
to predict the normal-light linear RGB images from the
brightened images, which are severely degraded by intensive
noise and color casting.

6) Failure Case: A failure case of our method is shown
in Fig. 9. Once the input image is heavily degraded with
color casting and proposed REENet can effectively enhance
the illumination and suppress noise but still with obvious color
casting.

7) Limitations: We have compared the running time of
different methods as shown in Table XIII. Note that we adopt
GPU to accelerate the running method if the code supports it.
Due to the high resolution of the SID dataset, inference time
is longer and the proposed REENet has a middle-level running
time consumption.

Besides, due to the highly camera-specific intensive noise
in images captured in extremely dark environments and the
diversity of ISP, our REENet cannot guarantee a promising
performance when directly being applied to low-light images
captured from another camera whose noise model is far away

TABLE XIII
RUNNING TIME (RT) EVALUATION COMPARING THE PROPOSED METHOD

AND OTHERS. DUE TO THE HIGH RESOLUTION OF THE SID DATASET,
INFERENCE TIME IS LONGER THAN USUAL AND THE PROPOSED

REENET HAS A MIDDLE-LEVEL VELOCITY

from our training set. We will address the issue in our future
work.

V. CONCLUSION

In this paper, we make the first benchmarking effort to
investigate the superiority of RAW for low light enhancement
in detail. The characteristics of RAW files i.e. linearity, the
access to meta-data, fine-grained information (more abundant
intensities and colors), inconvenience for display and lack
of efficiency are detailed and their effects on the low-light
enhancement are illustrated with quantitative results. For a
fair evaluation, we take a novel view to regard low-light
enhancement in a Factorized Enhancement Model (FEM) and
obtain a precise and explicit description to decompose the
ambiguities of this task into several measurable factors. Based
on useful insights obtained from the benchmarking results, the
proposed REENet adopts RAW-guiding strategy, overcomes
the issues brought by the nonlinearity of the sRGB images and
the unavailability of RAW images in many applications, and
outperforms many state-of-the-art sRGB-based approaches.
Our framework only needs to use RAW images during the
training phase and offers better results with only sRGB inputs
in testing, hence our results absorb the RAW’s information
as much as possible in the training but do not rely on the
RAW input and adjust the ISP process in real applications.
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Experimental results show the superior performance of our
method and the rationality of our model design.

REFERENCES

[1] C. Chen, Q. Chen, J. Xu, and V. Koltun, “Learning to see in the
dark,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 3291–3300.

[2] H. Jiang and Y. Zheng, “Learning to see moving objects in the dark,”
in Proc. IEEE/CVF Int. Conf. Comput. Vis., Oct. 2019, pp. 7323–7332.

[3] M. Afifi, A. Abdelhamed, A. Abuolaim, A. Punnappurath, and M. S.
Brown, “CIE XYZ Net: Unprocessing images for low-level computer
vision tasks,”Ã‚Âž 2021, arXiv:2006.12709.

[4] K. Xu, X. Yang, B. Yin, and R. W. H. Lau, “Learning to restore low-
light images via decomposition- and-enhancement,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2020, pp. 2278–2287.

[5] H. Ibrahim and N. S. P. Kong, “Brightness preserving dynamic histogram
equalization for image contrast enhancement,” IEEE Trans. Consum.
Electron., vol. 53, no. 4, pp. 1752–1758, Nov. 2007.

[6] T. Arici, S. Dikbas, and Y. Altunbasak, “A histogram modification
framework and its application for image contrast enhancement,” IEEE
Trans. Image Process., vol. 18, no. 9, pp. 1921–1935, Sep. 2009.

[7] X. Dong et al., “Fast efficient algorithm for enhancement of low lighting
video,” in Proc. IEEE Int. Conf. Multimedia Expo, Jul. 2011, pp. 1–6.

[8] D. J. Jobson, Z.-U. Rahman, and G. A. Woodell, “A multiscale Retinex
for bridging the gap between color images and the human observation
of scenes,” IEEE Trans. Image Process., vol. 6, no. 7, pp. 965–976,
Jul. 1997.

[9] K. G. Lore, A. Akintayo, and S. Sarkar, “LLNet: A deep autoencoder
approach to natural low-light image enhancement,” Pattern Recognit.,
vol. 61, pp. 650–662, Jan. 2017.

[10] Y. Zhang, J. Zhang, and X. Guo, “Kindling the darkness: A practical
low-light image enhancer,” in Proc. 27th ACM Int. Conf. Multimedia,
Oct. 2019, pp. 1632–1640.

[11] C. Chen, Q. Chen, M. Do, and V. Koltun, “Seeing motion in the dark,”
in Proc. IEEE/CVF Int. Conf. Comput. Vis., Oct. 2019, pp. 3184–3193.

[12] M. S. Brown, “Understanding color and the in-camera image processing
pipeline for computer vision,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. Tutorial, Oct. 2019, pp. 1–247.

[13] E. Schwartz, R. Giryes, and A. M. Bronstein, “DeepISP: Toward learning
an end-to-end image processing pipeline,” IEEE Trans. Image Process.,
vol. 28, no. 2, pp. 912–923, Feb. 2019.

[14] K. Wei, Y. Fu, J. Yang, and H. Huang, “A physics-based noise formation
model for extreme low-light raw denoising,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2020, pp. 2755–2764.

[15] M. Zhu, P. Pan, W. Chen, and Y. Yang, “EEMEFN: Low-light image
enhancement via edge-enhanced multi-exposure fusion network,” in
Proc. AAAI Conf. Artif. Intell., Feb. 2020, pp. 13106–13113.

[16] S. M. Pizer, R. E. Johnston, J. P. Ericksen, B. C. Yankaskas, and
K. E. Müller, “Contrast-limited adaptive histogram equalization: Speed
and effectiveness,” in Proc. Conf. Vis. Biomed. Comput., May 1990,
pp. 337–345.

[17] M. Abdullah-Al-Wadud, M. H. Kabir, M. A. A. Dewan, and O. Chae,
“A dynamic histogram equalization for image contrast enhancement,”
IEEE Trans. Consum. Electron., vol. 53, no. 2, pp. 593–600, May 2007.

[18] C. Lee, J.-H. Kim, C. Lee, and C.-S. Kim, “Optimized brightness
compensation and contrast enhancement for transmissive liquid crystal
displays,” IEEE Trans. Circuits Syst. Video Technol., vol. 24, no. 4,
pp. 576–590, Apr. 2014.

[19] C. Lee, C. Lee, and C.-S. Kim, “Contrast enhancement based on
layered difference representation of 2D histograms,” IEEE Trans. Image
Process., vol. 22, no. 12, pp. 5372–5384, Dec. 2013.

[20] K. Nakai, Y. Hoshi, and A. Taguchi, “Color image contrast enhacement
method based on differential intensity/saturation gray-levels histograms,”
in Proc. Int. Symp. Intell. Signal Process. Commun. Syst., Nov. 2013,
pp. 445–449.

[21] X. Zhang, P. Shen, L. Luo, L. Zhang, and J. Song, “Enhancement and
noise reduction of very low light level images,” in Proc. 21st Int. Conf.
Pattern Recognit., Nov. 2012, pp. 2034–2037.

[22] L. Li, R. Wang, W. Wang, and W. Gao, “A low-light image enhancement
method for both denoising and contrast enlarging,” in Proc. IEEE Int.
Conf. Image Process., Sep. 2015, pp. 3730–3734.

[23] Q. Zhang, Y. Nie, L. Zhang, and C. Xiao, “Underexposed video
enhancement via perception-driven progressive fusion,” IEEE Trans. Vis.
Comput. Graphics, vol. 22, no. 6, pp. 1773–1785, Jun. 2016.

[24] T. Celik and T. Tjahjadi, “Contextual and variational contrast enhance-
ment,” IEEE Trans. Image Process., vol. 20, no. 12, pp. 3431–3441,
Dec. 2011.

[25] S.-Y. Yu and H. Zhu, “Low-illumination image enhancement algorithm
based on a physical lighting model,” IEEE Trans. Circuits Syst. Video
Technol., vol. 29, no. 1, pp. 28–37, Jan. 2019.

[26] Z. Ying, G. Li, and W. Gao, “A bio-inspired multi-exposure
fusion framework for low-light image enhancement,”Ã‚Âž2017,
arXiv:1711.00591.

[27] D. J. Jobson, Z.-U. Rahman, and G. A. Woodell, “Properties and
performance of a center/surround Retinex,” IEEE Trans. Image Process.,
vol. 6, no. 3, pp. 451–462, Mar. 1997.

[28] C. Lee, J. Shih, C. Lien, and C. Han, “Adaptive multiscale retinex for
image contrast enhancement,” in Proc. Int. Conf. Signal-Image Technol.
Internet-Based Syst., Dec. 2013, pp. 43–50.

[29] S. Wang, J. Zheng, H.-M. Hu, and B. Li, “Naturalness preserved
enhancement algorithm for non-uniform illumination images,” IEEE
Trans. Image Process., vol. 22, no. 9, pp. 3538–3548, Sep. 2013.

[30] X. Fu, Y. Sun, M. LiWang, Y. Huang, X.-P. Zhang, and X. Ding,
“A novel retinex based approach for image enhancement with illumi-
nation adjustment,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., May 2014, pp. 1190–1194.

[31] X. Fu, D. Zeng, Y. Huang, Y. Liao, X. Ding, and J. Paisley,
“A fusion-based enhancing method for weakly illuminated images,”
Signal Process., vol. 129, pp. 82–96, Dec. 2016.

[32] M. Li, J. Liu, W. Yang, X. Sun, and Z. Guo, “Structure-revealing low-
light image enhancement via robust Retinex model,” IEEE Trans. Image
Process., vol. 27, no. 6, pp. 2828–2841, Jun. 2018.

[33] X. Ren, M. Li, W.-H. Cheng, and J. Liu, “Joint enhancement and
denoising method via sequential decomposition,” in Proc. IEEE Int.
Symp. Circuits Syst., Apr. 2018, pp. 1–5.

[34] L. Shen, Z. Yue, F. Feng, Q. Chen, S. Liu, and J. Ma, “MSR-Net:
Low-light image enhancement using deep convolutional network,” 2017,
arXiv:1711.02488.

[35] L. Tao, C. Zhu, G. Xiang, Y. Li, H. Jia, and X. Xie, “LLCNN: A
convolutional neural network for low-light image enhancement,” in Proc.
IEEE Vis. Commun. Image Process., Dec. 2017, pp. 1–4.

[36] F. Lv, F. Lu, J. Wu, and C. Lim, “MBLLEN: Low-light image/video
enhancement using cnns,” in Proc. Brit. Mach. Vis. Conf., Sep. 2018,
p. 220.

[37] J. Cai, S. Gu, and L. Zhang, “Learning a deep single image contrast
enhancer from multi-exposure images,” IEEE Trans. Image Process.,
vol. 27, no. 4, pp. 2049–2062, Apr. 2018.

[38] R. Wang, Q. Zhang, C.-W. Fu, X. Shen, W.-S. Zheng, and J. Jia,
“Underexposed photo enhancement using deep illumination estimation,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2019,
pp. 6842–6850.

[39] C. Wei, W. Wang, W. Yang, and J. Liu, “Deep retinex decomposition
for low-light enhancement,” in Proc. Brit. Mach. Vis. Conf., Sep. 2018,
p. 155.

[40] Y. Jiang, X. Gong, D. Liu, Y. Cheng, and C. Fang, “EnlightenGAN:
Deep light enhancement without paired supervision,” IEEE Trans. Image
Process., vol. 30, pp. 2340–2349, 2021.

[41] C. Guo et al., “Zero-reference deep curve estimation for low-light image
enhancement,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2020, pp. 1777–1786.

[42] W. Yang, S. Wang, Y. Fang, Y. Wang, and J. Liu, “From fidelity to
perceptual quality: A semi-supervised approach for low-light image
enhancement,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2020, pp. 3060–3069.

[43] M. Gharbi, J. Chen, J. T. Barron, S. W. Hasinoff, and F. Durand, “Deep
bilateral learning for real-time image enhancement,” ACM Trans. Graph.,
vol. 36, no. 4, p. 118, Jul. 2017.

[44] X. Yang, K. Xu, Y. Song, Q. Zhang, X. Wei, and R. W. Lau, “Image
correction via deep reciprocating HDR transformation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 1798–1807.

[45] M. Afifi, K. G. Derpanis, B. Ommer, and M. S. Brown, “Learning multi-
scale photo exposure correction,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2021, pp. 9157–9167.

[46] V. Wolf, A. Lugmayr, M. Danelljan, L. Van Gool, and R. Timofte,
“DeFlow: Learning complex image degradations from unpaired data
with conditional flows,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2021, pp. 94–103.

[47] T. Brooks, B. Mildenhall, T. Xue, J. Chen, D. Sharlet, and J. T. Barron,
“Unprocessing images for learned raw denoising,” in Proc. CVPR,
Jun. 2019, pp. 11036–11045.

Authorized licensed use limited to: Peking University. Downloaded on January 27,2022 at 16:04:30 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: TOWARDS LOW LIGHT ENHANCEMENT WITH RAW IMAGES 1405

[48] S. W. Zamir et al., “CycleISP: Real image restoration via improved data
synthesis,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2020, pp. 2693–2702.

[49] S. W. Hasinoff, Photon, Poisson Noise. Boston, MA, USA: Springer,
2014, pp. 608–610.

[50] A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian, “Practical
Poissonian-Gaussian noise modeling and fitting for single-image raw-
data,” IEEE Trans. Image Process., vol. 17, no. 10, pp. 1737–1754,
Oct. 2008.

[51] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. Med. Image Com-
put. Comput.-Assist. Intervent., vol. 9351, Oct. 2015, pp. 234–241.

[52] X. Guo, Y. Li, and H. Ling, “LIME: Low-light image enhancement
via illumination map estimation,” IEEE Trans. Image Process., vol. 26,
no. 2, pp. 982–993, Feb. 2017.

[53] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncell, “Image quality
assessment: From error visibility to structural similarity,” IEEE Trans.
Image Process., vol. 15, no. 2, pp. 430–444, Feb. 2004.

[54] H. R. Sheikh and A. C. Bovik, “Image information and visual quality,”
IEEE Trans. Image Process., vol. 15, no. 2, pp. 430–444, Feb. 2006.

[55] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a ‘completely
blind’ image quality analyzer,” IEEE Signal Process. Lett., vol. 20, no. 3,
pp. 209–212, Mar. 2013.

[56] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unrea-
sonable effectiveness of deep features as a perceptual metric,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 586–595.

[57] H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising: Can
plain neural networks compete with BM3D?” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2012, pp. 2392–2399.

[58] P. Liu, H. Zhang, K. Zhang, L. Lin, and W. Zuo, “Multi-level wavelet-
CNN for image restoration,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. Workshops, Jun. 2018, pp. 773–782.

[59] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent., May 2015, pp. 1–15.

[60] S. Lin, J. Gu, S. Yamazaki, and H.-Y. Shum, “Radiometric calibration
from a single image,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., Jun. 2004, pp. 938–945.

Haofeng Huang (Graduate Student Member, IEEE)
received the B.S. degree in computer science from
Peking University, Beijing, China, in 2021, where
he is currently pursuing the Ph.D. degree with
the Wangxuan Institute of Computer Technology.
His current research interests include deep-learning-
based image/video compression, image/video coding
for machines, and intelligent visual enhancement.

Wenhan Yang (Member, IEEE) received the
B.S. and Ph.D. (Hons.) degrees in computer sci-
ence from Peking University, Beijing, China, in
2012 and 2018, respectively. He is currently a
Postdoctoral Research Fellow with the Depart-
ment of Computer Science, City University of
Hong Kong. He has authored over 100 techni-
cal articles in refereed journals and proceedings.
He holds nine granted patents. His current research
interests include image/video processing/restoration,
bad weather restoration, and human–machine collab-

orative coding. He has received the IEEE ICME-2020 Best Paper Award, the
IFTC 2017 Best Paper Award, and the IEEE CVPR-2018 UG2 Challenge
First Runner-Up Award. He was the Candidate of the CSIG Best Doctoral
Dissertation Award in 2019. He has served as the Area Chair for IEEE ICME-
2021 and the Organizer for IEEE CVPR-2019/2020/2021 UG2+ Challenge
and Workshop.

Yueyu Hu (Graduate Student Member, IEEE)
received the B.S. and M.S. degrees in computer
science from Peking University, Beijing, China, in
2018 and 2021, respectively. He is currently pur-
suing the Ph.D. degree with New York University,
New York, NY, USA. His current research interest
includes machine learning inspired 2D and 3D image
compression and processing. He received the Best
Paper Award at IEEE ICME-2020.

Jiaying Liu (Senior Member, IEEE) received the
Ph.D. degree (Hons.) in computer science from
Peking University, Beijing, China, 2010. She was a
Visiting Scholar with the University of Southern Cal-
ifornia, Los Angeles, CA, USA, from 2007 to 2008.
In 2015, she was a Visiting Researcher with
Microsoft Research Asia, supported by the Star
Track Young Faculties Award. She is currently an
Associate Professor and a Boya Young Fellow with
the Wangxuan Institute of Computer Technology,
Peking University. She has authored more than

100 technical articles in refereed journals and proceedings. She holds
60 granted patents. Her current research interests include multimedia signal
processing, compression, and computer vision. She is a Senior Member of
CSIG and CCF. She has served as a member for Multimedia Systems and
Applications Technical Committee (MSA TC) and Visual Signal Processing
and Communications Technical Committee (VSPC TC) in IEEE Circuits and
Systems Society. She has received the IEEE ICME 2020 Best Paper Award
and IEEE MMSP 2015 Top10% Paper Award. She has served as the Technical
Program Chair for IEEE ICME-2021/ACM ICMR-2021, the Area Chair for
CVPR-2021/ECCV-2020/ICCV-2019, and the CAS Representative for the
ICME Steering Committee. She has served as an Associate Editor for the
IEEE TRANSACTIONS ON IMAGE PROCESSING, the IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, and Journal of
Visual Communication and Image Representation. She was the APSIPA
Distinguished Lecturer (2016–2017).

Ling-Yu Duan (Member, IEEE) received the Ph.D.
degree in information technology from The Univer-
sity of Newcastle, Callaghan, Australia, in 2008.
He has been serving as the Associate Director for
the Rapid-Rich Object Search Laboratory (ROSE),
a joint lab between Nanyang Technological Uni-
versity (NTU), Singapore, and Peking University
(PKU), China, since 2012. He has been with the
Peng Cheng Laboratory, Shenzhen, China, since
2019. He is currently a Full Professor with the
National Engineering Laboratory of Video Technol-

ogy (NELVT), School of Electronics Engineering and Computer Science,
PKU. He has published about 200 research papers. His research interests
include multimedia indexing, search, and retrieval, mobile visual search, visual
feature coding, and video analytics. He has received the IEEE ICME Best
Paper Award in 2019/2020, the IEEE VCIP Best Paper Award in 2019,
EURASIP Journal on Image and Video Processing Best Paper Award in
2015, the Ministry of Education Technology Invention Award (First Prize)
in 2016, the National Technology Invention Award (Second Prize) in 2017,
the China Patent Award for Excellence (2017), and the National Information
Technology Standardization Technical Committee “Standardization Work Out-
standing Person” Award in 2015. He serves as the Area Chair for ACM MM
and IEEE ICME. He was a Co-Editor of MPEG Compact Descriptors for
Visual Search (CDVS) Standard (ISO/IEC 15938-13) and MPEG Compact
Descriptors for Video Analytics (CDVA) Standard (ISO/IEC 15938-15).
He is an Associate Editor of IEEE TRANSACTIONS ON MULTIMEDIA, ACM
Transactions on Intelligent Systems and Technology, and ACM Transactions
on Multimedia Computing, Communications, and Applications.

Authorized licensed use limited to: Peking University. Downloaded on January 27,2022 at 16:04:30 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


